Date Published:
2008
Publication Type:
Journal Article
Authors:
Secondary:
Journal of Neuroimmunology
Volume:
200
Pagination:
100-10
URL:
https://pubmed.ncbi.nlm.nih.gov/
Keywords:
External
Abstract:
<p>Monocyte infiltration is an important pathogenic event in human immunodeficiency virus type one (HIV-1) associated dementia (HAD). CXCL8 (Interleukin 8, IL-8), a CXC chemokine that elicits chemotaxis of neutrophils, has recently been found to recruit monocytes or synergistically enhance CCL2-mediated monocyte migration. In this report, we demonstrate CXCL8 levels in the cerebrospinal fluid of HAD patients are higher than HIV-1 seropositive patients without neurological impairment. The underlying mechanisms regulating CXCL8 production during disease are not completely understood. We investigated the role of HIV-1-infected and immune-competent macrophages, the principal target cell and mediator of neuronal injury in HAD, in regulating astrocyte CXCL8 production. Immune-activated and HIV-1-infected human monocyte-derived-macrophages (MDM) conditioned media (MCM) induced production of CXCL8 by human astrocytes. This CXCL8 production was dependent on MDM IL-1beta and TNF-alpha production following viral and immune activation. CXCL8 production was reduced by inhibitors for mitogen-activated protein kinases (MAPKs), including p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases (ERK1/2). Moreover, prolonged IL-1beta or TNF-alpha treatment activated double-stranded RNA-activated protein kinase (PKR). Inhibition of PKR prevented elevated CXCL8 production in astrocytes. We conclude that IL-1beta and TNF-alpha, produced from HIV-1-infected and immune-competent macrophages, are critical in astrocyte CXCL8 production. Multiple protein kinases, including p38, JNK, ERK1/2, and PKR, participate in the inflammatory response of astrocytes. These observations will help to identify effective therapeutic strategies to reduce high-levels of CXCL8-mediated CNS inflammation during HAD.</p>