Date Published:
2019 12

Publication Type:
Journal Article

Authors:

V. Soontornniyomkij
D.J. Moore
B. Gouaux
B. Soontornniyomkij
J.S. Sinsheimer
A.J. Levine

Secondary:
J Neurovirol

Volume:
25

Pagination:
741-753

Issue:
6

PMID:
31144289

URL:
https://pubmed.ncbi.nlm.nih.gov/31144289

DOI:
10.1007/s13365-019-00761-y

Keywords:
Adult;Aged;Amyloid beta-Peptides;Brain;Cognition;Female;HIV Infections;HIV-1;Humans;Male;Middle Aged;Neurofibrillary Tangles;Neuropsychological Tests;Plaque, Amyloid;tau Proteins

Abstract:
<p>With increasing age, the general population is increasingly vulnerable to the development of cerebral amyloid-β (Aβ) plaque and neuronal phospho-tau (p-tau) pathology. In HIV disease, prior studies of these neuropathologic changes were relatively limited. Here, we characterized Aβ plaques and p-tau lesions by immunohistochemistry in relevant brain regions (prefrontal neocortex, putamen, basal-temporal neocortex, and hippocampus) of HIV-infected adults. We used multivariable logistic regression to predict regional Aβ plaque or p-tau pathology based on demographic factors, apolipoprotein E (APOE) genotypes, HIV disease-related factors, and regional gliosis. We used multiple linear regression to predict T-scores in neuropsychological domains based on regional Aβ plaque or p-tau pathology. We found that APOE ε4 alleles, older age, and higher plasma HIV-1 RNA predicted prefrontal Aβ plaques (odds ratio (OR) 5.306, 1.045, and 0.699, respectively, n = 168). Older age predicted putamen Aβ plaques (OR 1.064, n = 171). APOE ε4 alleles, hepatitis C virus seropositivity, and higher plasma HIV-1 RNA predicted hippocampus Aβ plaques (OR 6.779, 6.138, and 0.589, respectively, n = 56). The p-tau lesions were sparse in the vast majority of affected cases. Lifetime substance use disorder and higher plasma HIV-1 RNA predicted putamen p-tau lesions (OR 0.278 and 0.638, respectively, n = 67). Older age and gliosis predicted hippocampus p-tau lesions (OR 1.128 and 0.592, respectively, n = 59). Prefrontal Aβ plaques predicted lower speed of information processing (n = 159) and putamen Aβ plaques predicted lower levels of attention and working memory (n = 88). Regional p-tau lesions were not significantly predictive of any neuropsychological domains. In conclusion, Aβ plaque or p-tau pathology in different brain regions was predicted by different sets of biological factors. Aβ plaques in prefrontal neocortex and putamen predicted poorer functioning in cognitive domains relevant to these brain regions. The absence of significant impact of regional p-tau lesions on neuropsychological functioning might be explained by the subthreshold burden of p-tau lesions.</p>