Date Published:
10/2004

Publication Type:
Journal Article

Authors:

M.A. Cosenza-Nashat
M.L. Zhao
S.C. Lee

Secondary:
Neuropathology and Applied Neurobiology

Volume:
30

Pagination:
478-90

Issue:
5

URL:
https://pubmed.ncbi.nlm.nih.gov/

Keywords:
Antigens;Caspases;CD;Differentiation;Endothelial Cells;External;In Situ Nick-End Labeling;Myelomonocytic

Abstract:
<p>Macrophages and microglia are the predominant cells infected with HIV-1 in the brain, yet the effects of productive HIV infection on the fate of these cells are poorly understood. In this study, we tested the hypothesis that HIV-1 expression influences cell death in infected macrophages and microglial cells. We detected apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) in the cerebral white matter of control and HIV encephalitis (HIVE) brains, and quantitatively analysed apoptotic cells with respect to their location (vessel-associated vs. parenchymal), CD68 expression, and HIV-1 p24 expression. There were more vessel-associated, but not more parenchymal, TUNEL+ cells in HIVE cases as compared to controls. Vessel-associated TUNEL+ cells were primarily endothelial cells (von Willebrand factor+) or macrophages (CD68+). TUNEL+/CD68+ cells were present in both control and HIVE cases in similar frequencies (2.1 +/- 0.7% vs. 1.9 +/- 0.7% of total CD68+ populations, respectively). In HIVE, TUNEL+/p24+ cells were 0.4 +/- 0.2% of the total p24+ cell population, which was lower than the frequency of TUNEL+/CD68+ cells (1.9 +/- 0.7%) in the total CD68+ macrophage population. These results suggest that HIV-1-infected macrophages and microglia are resistant to apoptosis, and may contribute to the formation of a central nervous system viral reservoir.</p>